
Orphan Prediction
Release 0.0.1

Urminder Singh

Dec 24, 2021

CONTENTS

1 Introduction 1

2 Tutorial 3

i

ii

CHAPTER

ONE

INTRODUCTION

MIND: ab initio gene predictions by MAKER combined with gene predictions INferred Directly from alignment of
RNA-Seq evidence to the genome.

BIND: ab initio gene predictions by BRAKER combined with gene predictions INferred Directly from alignment of
RNA-Seq evidence to the genome.

Overview

You will need an diverse, orphan-enriched RNA-Seq dataset from NCBI-SRA (as available) and the genome sequence
of your species of interest. Run an ab initio prediction either by BRAKER or by MAKER (we provide Singularity
containers to facilitate installation of these pipelines). Run the evidenced-based Direct Inference pipeine. Combine the
ab initio predictions with the Direct Inference predictions using Mikado. Evaluate your predictions

1

Orphan Prediction, Release 0.0.1

2 Chapter 1. Introduction

CHAPTER

TWO

TUTORIAL

See the detailed scripts here .

2.1 Contents

2.1.1 Find an Orphan-Enriched RNA-Seq dataset from NCBI-SRA

See the detailed scripts here .

Notes:

This step is optional, and applies to species with >40 available SRA RNA-Seq runs. It is designed to provide a
diverse dataset, rich in representation of all genes including orphan genes.

If the species you are annotating has fewer than ~40 SRA RNA-Seq runs, download it all and go on to one of the
ab initio prediction methods.

If you are relying solely on RNA-Seq data that you generate yourself, *maximize* representation of genes by
including diverse conditions like reproductive tissues, biotic and abiotic stresses, and a variety of other tissue
and organ types.

Select RNA-Seq SRR ID from NCBI-SRA website for your desired species:

Go to NCBI SRA page and search with “SRA Advanced Search Builder”. This allows you to build a query and select
the Runs that satisfy certain requirements. For example:

1 ("Arabidopsis thaliana"[Organism] AND
2 "filetype fastq"[Filter] AND
3 "paired"[Layout] AND
4 "illumina"[Platform] AND
5 "transcriptomic"[Source])

Then export the results to “Run Selector” as follows:

3

https://github.com/eswlab/orphan-prediction
https://github.com/eswlab/orphan-prediction/tree/master/scripts/RNA-Seq_data_identification
https://www.ncbi.nlm.nih.gov/sra

Orphan Prediction, Release 0.0.1

Clicking the “Accession List” allows you to download all the SRR IDs in a text file format.

Download RNA-Seq raw reads:

1 while read line; do
2 ./01_runSRAdownload.sh ${line};
3 done < SRR_Acc_List.txt

Note: depending on how much data you find, this can take a lot of time and resources (disk usage). You may need
to narrow down and select only a subset of total SRA runs. Another way to choose datasets with maximal orphan
representation is to select SRRs most likely to be diverse (eg: stress response, flowering tissue, or SRRs with very deep
coverage).

4 Chapter 2. Tutorial

Orphan Prediction, Release 0.0.1

Download the CDS sequences for the organism you are annotating, and build transcriptome for
kallisto index:

1 wget https://www.arabidopsis.org/download_files/Genes/Araport11_genome_release/Araport11_
→˓blastsets/Araport11_genes.201606.cds.fasta.gz

2 gunzip Araport11_genes.201606.cds.fasta.gz
3 kallisto index -i ARAPORT11cds Araport11_genes.201606.cds.fasta

For each SRR ID, run the Kallisto qualitification:

1 while read line; do
2 02_runKallisto.sh ARAPORT11cds ${line};
3 done < SRR_Acc_List.txt

Merge the tsv files containing counts and TPM:

1 03_joinr.sh *.tsv >> kallisto_out_tair10.txt

Note: For every SRR id, the file contains 3 columns, effective length , estimated counts and transcript
per million .

Run phylostratr to infer phylostrata of genes, and identify orphan genes:

1. Build a phylogenic tree for your species, and download proteins sequences for target species:

1 ./04_runPhylostratRa.R

2. Run Blast to compare query proteins and target proteins:

1 while read line; do
2 # 3702 is taxid for our focal species A.thaliana.
3 # You can replace your own protein sequences for your focal species if protein␣

→˓downloaded from uniprot is not your desired version.
4 05_runBLASTp.sh ${line} 3702.faa;
5 done < uniprot_list.txt

3. Process Blast output and stratify phylostrata level for each query gene:

1 ./06_runPhylostratRb.R

Note: Phylostratr will run protein blast automatically if it doesn’t detect blast database and output files in work-
ing directory, so you can skip step2 to obtain blast output. However, it may takes a long time depend on the
number of species and the size of your query genes. You can also use strata_diamond instead of strata in
06_runPhylostratRb.R , it will use Diamond Blast instead of Blast-plus. Diamond blast is much faster than
Blast-plus, but may not sensitive as Blast-plus.

2.1. Contents 5

Orphan Prediction, Release 0.0.1

Select Orphan-rich RNA-Seq data:

Once the orphan (species-specific) genes are identified, count the total number of orphan genes expressed (>1TPM) in
each SRR, rank them based on % orphan expressed. Depending on how much computational resources you have, you
can select the top X number of SRRs to use them as evidence for direct inference and as training data.

Note: for Arabidopsis thaliana, we used all of the SRRs that expressed over 60% of the orphan genes (=38 SSRs).

2.1.2 Ab initio predictions

Pick one of the 2 ab initio prediction methods below:

Run BRAKER

• Align RNA-Seq with splice aware aligner (STAR or HiSat2 preferred; HiSat2 used here)

• Generate BAM file for each SRA-SRR id, merge them to generate a single sorted BAM file

• Run BRAKER

Run MAKER

• Align RNA-Seq with splice aware aligner (STAR or HiSat2 preferred; HiSat2 used here)

• Generate BAM file for each SRA-SRR id, merge them to generate a single sorted BAM file

• Run Trinity to generate transcriptome assembly using the BAM file

• Run TransDecoder on Trinity transcripts to predict ORFs and translate them to protein

• Run MAKER with transcripts (Trinity), proteins (TransDecoder and SwissProt), in homology-only mode

• Use the MAKER predictions to train SNAP and AUGUSTUS. Self-train GeneMark

• Run second round of MAKER with the above (SNAP, AUGUSTUS, and GeneMark) ab initio predictions plus
the results from previous MAKER rounds.

BRAKER prediction

See the scripts used for BRAKER here .

• Input files for Braker

RNA-Seq raw reads fastq files: *_1.fastq.gz, *_2.fastq.gz
reference genome fasta file: TAIR10_chr_all.fas

• To simplify handling of files, combine all the forward reads to one file and all the reverse reads to another.

1 cat *_1.fastq.gz >> forward_reads.fq.gz
2 cat *_2.fastq.gz >> reverse_reads.fq.gz

• Do RNA-Seq alignment by Hisat2:

1 ./01_runHisat2.sh forward_reads.fq.gz reverse_reads.fq.gz TAIR10_chr_all.fas

• Run BRAKER by your installed tools:

1 ./02_runBraker.sh TAIR10_chr_all.fas TAIR10_rnaseq.bam

6 Chapter 2. Tutorial

https://github.com/eswlab/orphan-prediction/tree/master/scripts/braker

Orphan Prediction, Release 0.0.1

• Run BRAKER by singularity comtainer:

If you have difficulty to install BRAKER, we suggest you to download the singularity container for this step.

To use the container, follow the instruction of the container to install and copy directory.

1 ./02_runBraker_singularity.sh TAIR10_chr_all.fas TAIR10_rnaseq.bam

Note: We only used RNA-Seq as evidence in our cases. BRAKER also accept protein evidence in different prediction
mode. However, It is not always best to use all evidence. You can test and determine which one is best for the species
you are working on. See the difference among BRAKER modes on their main page.

MAKER predictions

See the scripts used for MAKER here .

Input files for Maker

RNA-Seq raw reads fastq files: *_1.fastq.gz, *_2.fastq.gz
reference genome fasta file: TAIR10_chr_all.fas

Merge RNA-Seq raw reads

To simplify handling of files, combine all the forward reads to one file and all the reverse reads to another.

1 cat *_1.fastq.gz >> forward_reads.fq.gz
2 cat *_2.fastq.gz >> reverse_reads.fq.gz

Run trinity to predict transcripts and their inferred proteins

1. Run trinity for de novo transcriptome assembly:

1 ./01_runTrinity.sh forward_reads.fq.gz reverse_reads.fq.gz

Note: You will get the transcripts fasta file in trinity_run folder.

2. Predict CDSs from transcriptome:

1 ./02_runTransDecoder.sh trinity.fasta

Note: You will get the protein sequence (trinity.fasta.transdecoder.pep) in working directory.

2.1. Contents 7

https://github.com/aseetharam/braker
https://github.com/Gaius-Augustus/BRAKER#running-braker
https://github.com/eswlab/orphan-prediction/tree/master/scripts/maker

Orphan Prediction, Release 0.0.1

MAKER requires five (non-automated) steps

1. Generate the CTL files:

1 module load GIF/maker
2 module rm perl/5.22.1
3 maker -CTL

This will generate 3 CTL files (maker_opts.ctl, maker_bopts.ctl and maker_exe.ctl), you will need to
edit them to make changes to the MAKER run. For the first round, change these lines in maker_opts.ctl file:

1 genome=TAIR10_chr_all.fas
2 est=trinity.fasta
3 protein=trinity.fasta.transdecoder.pep
4 est2genome=1
5 protein2genome=1
6 TMP=/dev/shm

2. Execute MAKER 03_maker_start.sh in a slurm file. It is essential to request more than 1 node with multiple
processors to run this efficiently.

1 # Define a base name for maker output folder as the first argument.
2 ./03_maker_start.sh maker_case

3. Upon completion, train SNAP and AUGUSTUS:

1 #Use the same base name as previous step for first argument.
2 ./04_maker_process.sh maker_case

4. Train GeneMark with genome sequence:

1 ./05_runGeneMark.sh TAIR10_chr_all.fas

5. Once complete, modify the following lines in maker_opts.ctl file:

1 snaphmm=maker.snap.hmm
2 gmhmm=gmhmm.mod
3 # Define a species as you want, but the name should not be existing in the augustus/

→˓config/species folder.
4 augustus_species=maker_20171103

Then, 03_maker_start.sh again:

1 # Use the same base name as previous step for first argument.
2 ./03_maker_start.sh maker_case

6. Finalize predictions:

1 ./06_maker_finalize.sh maker_case

You will get the predicted gene models (maker_case.gff), protein sequences (maker_case.maker.
proteins.fasta) and transcript sequence (maker_case.maker.transcripts.fasta) in the working di-
rectory.

8 Chapter 2. Tutorial

Orphan Prediction, Release 0.0.1

2.1.3 Direct Inference evidence-based predictions

Automated pipeline

We provide an automated pipeline using pyrpipe and snakemake. This pipeline can be easily configured and executed
in an automated manner (HIGHLY RECOMMENDED).

The automated pipeline can be easily scaled on an HPC by executing multiple samples in parallel. We recommend
using this implementation of the pipeline for simplicity of use and reproducibility of results.

The pipeline can easily be modified and shared. For additional information see: pyrpipe (https://doi.org/10.1093/
nargab/lqab049) and orfipy (https://doi.org/10.1093/bioinformatics/btab090) pipelines.

Direct Inference prediction by steps

If you prefer to run the Direct Inference pipeline step by step, the details are explained below.

Direct Inference predictions by steps

See the scripts used for Direct Inference prediction here .

Singularity container

For installation, we suggest that you to download the singularity container . This container includes all tools
required to run the pipeline.

To use the container, add singularity run --cleanenv evidence.sif before the tools in each script. For exam-
ple:

1 singularity run --cleanenv evidence.sif hisat2

Input files for DirectInf

RNA-Seq raw reads fastq files: *_1.fastq.gz, *_2.fastq.gz
reference genome fasta file: TAIR10_chr_all.fas
list of input prediction: list.txt

Do RNA-Seq alignment by Hisat2

1 while read line; do
2 ./01_runHisat2.sh ${line} TAIR10_chr_all.fas;
3 done < SRR_Acc_List.txt

Note: Cufflinks and Class2 may takes a long time to process BAM file with deep depth region. Better to generate single
bam file for each RNA-Seq data for next step.

2.1. Contents 9

https://github.com/eswlab/orphan-prediction/tree/master/evidence_based_pipeline
https://github.com/urmi-21/pyrpipe
https://snakemake.github.io/
https://doi.org/10.1093/nargab/lqab049
https://doi.org/10.1093/nargab/lqab049
https://doi.org/10.1093/bioinformatics/btab090
https://github.com/eswlab/orphan-prediction/tree/master/scripts/DirectInf
https://github.com/aseetharam/transcript-assemblers

Orphan Prediction, Release 0.0.1

Run Transcriptome assemblies using Class2, Cufflinks and Stringtie

1 while read line; do
2 ./02_runClass2.sh ${line}_sorted.bam;
3 ./03_runCufflinks.sh ${line}_sorted.bam;
4 ./04_runStringtie.sh ${line}_sorted.bam;
5 done < SRR_Acc_List.txt

Note: Class2, Cufflinks and StringTie generates a gtf format transcripts for each SRR sample. You can use more
transcriptome assembler as you need.

Generate high confidence splice sites

1 ./05_runPortCullis.sh TAIR10_rnaseq.bam

Note: The merged bam file (TAIR10_rnaseq.bam) obtained from the process of braker. You can also provide multiple
single bam files got from 01_runHisat2.sh , but it takes some time to merge bam files. It’s faster to provide merged bam
if you already run braker.

Here generate bed and tab file in portcullis_out/3-filt, we only use bed file.

Consolidate all the transcripts, and predict potential protein coding sequence

1. Make a configure file and prepare transcripts:

You should prepare a `list.txt as below to include gtf path (1st column), gtf abbrev (2nd column), stranded-
specific or not (3rd column):

1 SRRID1_class.gtf cs_SRRID1 False
2 SRRID1_cufflinks.gtf cl_SRRID1 False
3 SRRID1_stringtie.gtf st_SRRID1 False
4 SRRID2_class.gtf cs_SRRID2 False
5 SRRID2_cufflinks.gtf cl_SRRID2 False
6 SRRID2_stringtie.gtf st_SRRID2 False
7 ...

Then run the script as below:

1 ./06_runMikado_round1.sh TAIR10_chr_all.fas junctions.bed list.txt DI

This will generate DI_prepared.fasta file that will be used for predicting ORFs in the next step.

2. Predict potential CDS from transcripts:

1 ./07_runTransDecoder.sh DI_prepared.fasta

We will use DI_prepared.fasta.transdecoder.bed in the next step.

Note: Here we only kept complete CDS for next step. You can revise 07_runTransDecoder.sh to use
both incomplete and complete CDS if you need.

10 Chapter 2. Tutorial

Orphan Prediction, Release 0.0.1

3. Pick best transcripts for each locus and annotate them as gene:

1 ./08_runMikado_round2.sh DI_prepared.fasta.transdecoder.bed DI

This will generate:

1 mikado.metrics.tsv
2 mikado.scores.tsv
3 DI.loci.gff3

Optional: Filter out transcripts with redundant CDS

1 ./09_rm_redundance.sh DI.loci.gff3 TAIR10_chr_all.fas

Optional: Filter out transcripts whose predicted proteins mapped to transposon elements

1 ./10_TEsorter.sh filter.pep.fa DI.loci.gff3

Note: filter.pep.fa is an output from previous step for removing redundant CDSs. You can also use all protein
sequence if you don’t want to remove redundant CDSs.

2.1.4 Combine ab initio and Direct Inference evidence-based predictions

Pick one of the 2 combined predictions below according to your choice in ab initio

1. Merge BRAKER with Direct Inference (BIND):

Use Mikado to combine BRAKER-generated predictions with Direct Inference evidence-based predic-
tions.

2. Merge MAKER with Direct Inference (MIND):

Use Mikado to combine MAKER-generated predictions with Direct Inference evidence-based predictions.

BIND prediction

Merge gene predictions of B RAKER (braker-final.gff3) with gene predictions IN ferred D irectly (DI-final.
gff3).

See the scripts used for BIND here .

Note: See the details to generate these two predictions in braker and DirectInf .

2.1. Contents 11

https://github.com/eswlab/orphan-prediction/tree/master/scripts/BIND

Orphan Prediction, Release 0.0.1

Input files for BIND

BRAKER prediction: braker-final.gff3
Direct Inference prediction: DI-final.gff3
reference genome fasta file: TAIR10_chr_all.fas
splice junction file: junctions.bed # from DirectInf step
list of input prediction: list_BIND.txt

Consolidate all the transcripts from BRAKER and DirInf, and predict potential protein coding se-
quence

1. Make a configure file and prepare transcripts:

You should prepare a list_BIND.txt as below to include gtf path (1st column), gtf abbrev (2nd column),
stranded-specific or not (3rd column):

1 braker-final.gff3 br False
2 DI-final.gff3 DI False

Then run the script as below:

1 ./01_runMikado_round1.sh TAIR10_chr_all.fas junctions.bed list_BIND.txt BIND

This will generate BIND_prepared.fasta file that will be used for predicting ORFs in the next step.

Note: junctions.bed is the same file generate from DirectInf step.

2. Predict potential CDS from transcripts:

1 ./02_runTransDecoder.sh BIND_prepared.fasta

We will use BIND_prepared.fasta.transdecoder.bed in the next step.

Note: Here we only kept complete CDS for next step. You can revise 02_runTransDecoder.sh to use
both incomplete and complete CDS if you need.

3. Pick best transcripts for each locus and annotate them as gene:

1 ./03_runMikado_round2.sh BIND_prepared.fasta.transdecoder.bed BIND

This will generate:

1 mikado.metrics.tsv
2 mikado.scores.tsv
3 BIND.loci.gff3

12 Chapter 2. Tutorial

Orphan Prediction, Release 0.0.1

Optional: Filter out transcripts with redundant CDS

1 ./04_rm_redundance.sh BIND.loci.gff3 TAIR10_chr_all.fas

Optional: Filter out transcripts whose predicted proteins mapped to transposon elements

Note: filter.pep.fa is an output from previous step for removing redundant CDSs. You can also use all protein
sequence if you don’t want to remove redundant CDSs.

MIND prediction

Merge gene predictions of M AKER (Maker-final.gff3) with gene predictions IN ferred D irectly (DI-final.
gff3).

See the scripts used for MIND here .

Note: See the details to generate these two predictions in maker and DirectInf .

Input files for MIND

BRAKER prediction: maker-final.gff3
Direct Inference prediction: DI-final.gff3
reference genome fasta file: TAIR10_chr_all.fas
splice junction file: junctions.bed # from DirectInf step
list of input prediction: list_MIND.txt

Consolidate all the transcripts from MAKER and DirInf, and predict potential protein coding se-
quence

1. Make a configure file and prepare transcripts:

You should prepare a list_MIND.txt as below to include gtf path (1st column), gtf abbrev (2nd column),
stranded-specific or not (3rd column):

1 maker-final.gff3 mk False
2 DI-final.gff3 DI False

Then run the script as below:

1 ./01_runMikado_round1.sh TAIR10_chr_all.fas junctions.bed list_MIND.txt MIND

This will generate MIND_prepared.fasta file that will be used for predicting ORFs in the next step.

Note: junctions.bed is the same file generate from DirectInf step.

2. Predict potential CDS from transcripts:

1 ./02_runTransDecoder.sh MIND_prepared.fasta

2.1. Contents 13

https://github.com/eswlab/orphan-prediction/tree/master/scripts/MIND

Orphan Prediction, Release 0.0.1

We will use MIND_prepared.fasta.transdecoder.bed in the next step.

Note: Here we only kept complete CDS for next step. You can revise 02_runTransDecoder.sh to use
both incomplete and complete CDS if you need.

3. Pick best transcripts for each locus and annotate them as gene:

1 ./03_runMikado_round2.sh MIND_prepared.fasta.transdecoder.bed MIND

This will generate:

1 mikado.metrics.tsv
2 mikado.scores.tsv
3 MIND.loci.gff3

Optional: Filter out transcripts with redundant CDS

1 ./04_rm_redundance.sh MIND.loci.gff3 TAIR10_chr_all.fas

Optional: Filter out transcripts whose predicted proteins mapped to transposon elements

Note: filter.pep.fa is an output from previous step for removing redundant CDSs. You can also use all protein
sequence if you don’t want to remove redundant CDSs.

2.1.5 Downstream analysis to evaluate and annnotate gene predictions

See the scripts used for downstream evaluation here .

1. Run Mikado Compare to compare prediction with known annotation

2. Run Salmon to quantify predictions

3. Run Ribotricer to verify translation signal for predicted protein coding genes

4. Run BUSCO to see how well the conserved genes are represented in your final predictions

5. Run OrthoFinder to find and annotate orthologs present in your predictions

6. Run phylostratR to find orphan genes in your predictions [For theory and details, see:
https://doi.org/10.1093/bioinformatics/btz171]

14 Chapter 2. Tutorial

https://github.com/eswlab/orphan-prediction/tree/master/scripts/downstream
https://doi.org/10.1093/bioinformatics/btz171

Orphan Prediction, Release 0.0.1

7. You can also add functional annotation to your genes using homology and InterProScan (We didn’t have this
step in our paper).

2.1.6 Tools used for prediction

Tool Purpose
SRA Tools (v. 2.9.6) SRA access
Hisat2 (v. 2.2.0) Alignment
STAR (v. 2.7.7a) Alignment
Kallisto (v. 0.46.2) Quantification
Samtools (v. 1.10) Tools
CLASS2 (v. 2.1.7) Transcript Assembly
Stringtie (v. 1.3.3) Transcript Assembly
Cufflinks (v. 2.2.1) Transcript Assembly
Trinity (v. 2.6.6) Transcript Assembly
Porticullis (v. 1.2.2) Tools
Transdecoder (v. 3.0.1) CDS prediction
Mikado (v. 2.0) Direct Inference prediction
Phylostratr (v. 0.2.0) Phylostratigraphy
BLAST (v. 3.11.0) Tools
Braker (v. 2.1.2) Ab initio prediction
Maker (v. 2.31.10) Ab initio prediction
GMAP-GSNAP (v. 2019-05-12) Alignment
GeneMark (v. 4.83) Ab initio Prediction

2.1. Contents 15

https://github.com/ncbi/sra-tools
https://daehwankimlab.github.io/hisat2/
https://github.com/alexdobin/STAR
https://pachterlab.github.io/kallisto/
https://github.com/samtools/samtools
http://ccb.jhu.edu/people/florea/research/CLASS2/
https://github.com/gpertea/stringtie
http://cole-trapnell-lab.github.io/cufflinks/
https://github.com/trinityrnaseq/trinityrnaseq
https://github.com/maplesond/portcullis
https://github.com/TransDecoder/TransDecoder
https://github.com/EI-CoreBioinformatics/mikado
https://github.com/arendsee/phylostratr
https://www.ncbi.nlm.nih.gov/books/NBK279668/
https://github.com/Gaius-Augustus/BRAKER
http://www.yandell-lab.org/software/maker-p.html
http://research-pub.gene.com/gmap/
http://exon.gatech.edu/GeneMark/

	Introduction
	Tutorial
	Contents
	Find an Orphan-Enriched RNA-Seq dataset from NCBI-SRA
	Select RNA-Seq SRR ID from NCBI-SRA website for your desired species:
	Download RNA-Seq raw reads:
	Download the CDS sequences for the organism you are annotating, and build transcriptome for kallisto index:
	For each SRR ID, run the Kallisto qualitification:
	Merge the tsv files containing counts and TPM:
	Run phylostratr to infer phylostrata of genes, and identify orphan genes:
	Select Orphan-rich RNA-Seq data:

	Ab initio predictions
	BRAKER prediction
	MAKER predictions
	Input files for Maker
	Merge RNA-Seq raw reads
	Run trinity to predict transcripts and their inferred proteins
	MAKER requires five (non-automated) steps

	Direct Inference evidence-based predictions
	Automated pipeline
	Direct Inference prediction by steps
	Direct Inference predictions by steps
	Singularity container
	Input files for DirectInf
	Do RNA-Seq alignment by Hisat2
	Run Transcriptome assemblies using Class2, Cufflinks and Stringtie
	Generate high confidence splice sites
	Consolidate all the transcripts, and predict potential protein coding sequence
	Optional: Filter out transcripts with redundant CDS
	Optional: Filter out transcripts whose predicted proteins mapped to transposon elements

	Combine ab initio and Direct Inference evidence-based predictions
	BIND prediction
	Input files for BIND
	Consolidate all the transcripts from BRAKER and DirInf, and predict potential protein coding sequence
	Optional: Filter out transcripts with redundant CDS
	Optional: Filter out transcripts whose predicted proteins mapped to transposon elements

	MIND prediction
	Input files for MIND
	Consolidate all the transcripts from MAKER and DirInf, and predict potential protein coding sequence
	Optional: Filter out transcripts with redundant CDS
	Optional: Filter out transcripts whose predicted proteins mapped to transposon elements

	Downstream analysis to evaluate and annnotate gene predictions
	Tools used for prediction

