

BIND and MIND: Gene prediction and optimization

Introduction

MIND: ab initio gene predictions by MAKER combined with gene
predictions INferred Directly from alignment of RNA-Seq
evidence to the genome.

BIND: ab initio gene predictions by
BRAKER combined with gene predictions INferred
Directly from alignment of RNA-Seq evidence to the genome.

Overview

You will need an diverse, orphan-enriched RNA-Seq dataset from NCBI-SRA (as available) and the genome sequence of your species of interest.
Run an ab initio prediction either by BRAKER or by MAKER (we provide Singularity containers to facilitate installation of these pipelines).
Run the evidenced-based Direct Inference pipeine. Combine the ab initio predictions with the Direct Inference predictions using Mikado. Evaluate your predictions

Tutorial

See the detailed scripts here [https://github.com/eswlab/orphan-prediction] .

Contents

	Find an Orphan-Enriched RNA-Seq dataset from NCBI-SRA

	Ab initio predictions

	Direct Inference evidence-based predictions

	Combine ab initio and Direct Inference evidence-based predictions

	Downstream analysis to evaluate and annnotate gene predictions

Tools used for prediction

	Tool

	Purpose

	SRA Tools [https://github.com/ncbi/sra-tools] (v. 2.9.6)

	SRA access

	Hisat2 [https://daehwankimlab.github.io/hisat2/] (v. 2.2.0)

	Alignment

	STAR [https://github.com/alexdobin/STAR] (v. 2.7.7a)

	Alignment

	Kallisto [https://pachterlab.github.io/kallisto/] (v. 0.46.2)

	Quantification

	Samtools [https://github.com/samtools/samtools] (v. 1.10)

	Tools

	CLASS2 [http://ccb.jhu.edu/people/florea/research/CLASS2/] (v. 2.1.7)

	Transcript Assembly

	Stringtie [https://github.com/gpertea/stringtie] (v. 1.3.3)

	Transcript Assembly

	Cufflinks [http://cole-trapnell-lab.github.io/cufflinks/] (v. 2.2.1)

	Transcript Assembly

	Trinity [https://github.com/trinityrnaseq/trinityrnaseq] (v. 2.6.6)

	Transcript Assembly

	Porticullis [https://github.com/maplesond/portcullis] (v. 1.2.2)

	Tools

	Transdecoder [https://github.com/TransDecoder/TransDecoder] (v. 3.0.1)

	CDS prediction

	Mikado [https://github.com/EI-CoreBioinformatics/mikado] (v. 2.0)

	Direct Inference prediction

	Phylostratr [https://github.com/arendsee/phylostratr] (v. 0.2.0)

	Phylostratigraphy

	BLAST [https://www.ncbi.nlm.nih.gov/books/NBK279668/] (v. 3.11.0)

	Tools

	Braker [https://github.com/Gaius-Augustus/BRAKER] (v. 2.1.2)

	Ab initio prediction

	Maker [http://www.yandell-lab.org/software/maker-p.html] (v. 2.31.10)

	Ab initio prediction

	GMAP-GSNAP [http://research-pub.gene.com/gmap/] (v. 2019-05-12)

	Alignment

	GeneMark [http://exon.gatech.edu/GeneMark/] (v. 4.83)

	Ab initio Prediction

Find an Orphan-Enriched RNA-Seq dataset from NCBI-SRA

See the detailed scripts here [https://github.com/eswlab/orphan-prediction/tree/master/scripts/RNA-Seq_data_identification] .

Notes:

This step is optional, and applies to species with >40 available SRA RNA-Seq runs. It is designed to provide a diverse dataset, rich in representation of all genes including orphan genes.

If the species you are annotating has fewer than ~40 SRA RNA-Seq runs, download it all and go on to one of the ab initio prediction methods.

If you are relying solely on RNA-Seq data that you generate yourself, *maximize* representation of genes by including diverse conditions like reproductive tissues, biotic and abiotic stresses, and a variety of other tissue and organ types.

Select RNA-Seq SRR ID from NCBI-SRA website for your desired species:

Go to NCBI SRA [https://www.ncbi.nlm.nih.gov/sra] page and search with “SRA Advanced Search Builder”.
This allows you to build a query and select the Runs that satisfy
certain requirements. For example:

1("Arabidopsis thaliana"[Organism] AND
2 "filetype fastq"[Filter] AND
3 "paired"[Layout] AND
4 "illumina"[Platform] AND
5 "transcriptomic"[Source])

Then export the results to “Run Selector” as follows:

[image: _images/ncbi-sra-1.png]
Clicking the “Accession List” allows you to download all the SRR IDs in
a text file format.

[image: _images/ncbi-sra-2.png]

Download RNA-Seq raw reads:

1 while read line; do
2 ./01_runSRAdownload.sh ${line};
3 done < SRR_Acc_List.txt

Note: depending on how much data you find, this can take a lot of time and resources (disk usage). You may need to narrow down and select only a subset of total SRA runs. Another way to choose datasets with maximal orphan representation is to select SRRs most likely to be diverse (eg: stress response, flowering tissue, or SRRs with very deep coverage).

Download the CDS sequences for the organism you are annotating, and build transcriptome for kallisto index:

1wget https://www.arabidopsis.org/download_files/Genes/Araport11_genome_release/Araport11_blastsets/Araport11_genes.201606.cds.fasta.gz
2gunzip Araport11_genes.201606.cds.fasta.gz
3kallisto index -i ARAPORT11cds Araport11_genes.201606.cds.fasta

For each SRR ID, run the Kallisto qualitification:

1while read line; do
2 02_runKallisto.sh ARAPORT11cds ${line};
3done < SRR_Acc_List.txt

Merge the tsv files containing counts and TPM:

103_joinr.sh *.tsv >> kallisto_out_tair10.txt

Note: For every SRR id, the file contains 3 columns, effective length , estimated counts and transcript per million .

Run phylostratr to infer phylostrata of genes, and identify orphan genes:

	Build a phylogenic tree for your species, and download proteins sequences for target species:

1./04_runPhylostratRa.R

	Run Blast to compare query proteins and target proteins:

1while read line; do
2# 3702 is taxid for our focal species A.thaliana.
3# You can replace your own protein sequences for your focal species if protein downloaded from uniprot is not your desired version.
4 05_runBLASTp.sh ${line} 3702.faa;
5done < uniprot_list.txt

	Process Blast output and stratify phylostrata level for each query gene:

1./06_runPhylostratRb.R

Note: Phylostratr will run protein blast automatically if it doesn’t detect blast database and output files in working directory, so you can skip step2 to obtain blast output. However, it may takes a long time depend on the number of species and the size of your query genes. You can also use strata_diamond instead of strata in 06_runPhylostratRb.R , it will use Diamond Blast instead of Blast-plus. Diamond blast is much faster than Blast-plus, but may not sensitive as Blast-plus.

Select Orphan-rich RNA-Seq data:

Once the orphan (species-specific) genes are identified, count the total number of orphan genes expressed (>1TPM) in each SRR, rank them based on % orphan expressed. Depending on how much computational resources you have, you can select the top X number of SRRs to use them as evidence for direct inference and as training data.

Note: for Arabidopsis thaliana, we used all of the SRRs that expressed over 60% of the orphan genes (=38 SSRs).

Ab initio predictions

Pick one of the 2 ab initio prediction methods below:

Run BRAKER

	Align RNA-Seq with splice aware aligner (STAR or HiSat2 preferred; HiSat2 used here)

	Generate BAM file for each SRA-SRR id, merge them to generate a single sorted BAM file

	Run BRAKER

Run MAKER

	Align RNA-Seq with splice aware aligner (STAR or HiSat2 preferred; HiSat2 used here)

	Generate BAM file for each SRA-SRR id, merge them to generate a single sorted BAM file

	Run Trinity to generate transcriptome assembly using the BAM file

	Run TransDecoder on Trinity transcripts to predict ORFs and translate them to protein

	Run MAKER with transcripts (Trinity), proteins (TransDecoder and SwissProt), in homology-only mode

	Use the MAKER predictions to train SNAP and AUGUSTUS. Self-train GeneMark

	Run second round of MAKER with the above (SNAP, AUGUSTUS, and GeneMark) ab initio predictions plus the results from previous MAKER rounds.

	BRAKER prediction

	MAKER predictions

BRAKER prediction

See the scripts used for BRAKER here [https://github.com/eswlab/orphan-prediction/tree/master/scripts/braker] .

	Input files for Braker

RNA-Seq raw reads fastq files: *_1.fastq.gz, *_2.fastq.gz
reference genome fasta file: TAIR10_chr_all.fas

	To simplify handling of files, combine all the forward reads to one file and all the reverse reads to another.

1cat *_1.fastq.gz >> forward_reads.fq.gz
2cat *_2.fastq.gz >> reverse_reads.fq.gz

	Do RNA-Seq alignment by Hisat2:

1./01_runHisat2.sh forward_reads.fq.gz reverse_reads.fq.gz TAIR10_chr_all.fas

	Run BRAKER by your installed tools:

1./02_runBraker.sh TAIR10_chr_all.fas TAIR10_rnaseq.bam

	Run BRAKER by singularity comtainer:

If you have difficulty to install BRAKER, we suggest you to download the singularity container [https://github.com/aseetharam/braker] for this step.

To use the container, follow the instruction of the container to install and copy directory.

1./02_runBraker_singularity.sh TAIR10_chr_all.fas TAIR10_rnaseq.bam

Note: We only used RNA-Seq as evidence in our cases. BRAKER also accept protein evidence in different prediction mode. However, It is not always best to use all evidence. You can test and determine which one is best for the species you are working on. See the difference among BRAKER modes on their main page [https://github.com/Gaius-Augustus/BRAKER#running-braker].

MAKER predictions

See the scripts used for MAKER here [https://github.com/eswlab/orphan-prediction/tree/master/scripts/maker] .

Input files for Maker

RNA-Seq raw reads fastq files: *_1.fastq.gz, *_2.fastq.gz
reference genome fasta file: TAIR10_chr_all.fas

Merge RNA-Seq raw reads

To simplify handling of files, combine all the forward reads to one file and all the reverse reads to another.

1cat *_1.fastq.gz >> forward_reads.fq.gz
2cat *_2.fastq.gz >> reverse_reads.fq.gz

Run trinity to predict transcripts and their inferred proteins

	Run trinity for de novo transcriptome assembly:

1./01_runTrinity.sh forward_reads.fq.gz reverse_reads.fq.gz

Note: You will get the transcripts fasta file in trinity_run folder.

2. Predict CDSs from transcriptome:

1./02_runTransDecoder.sh trinity.fasta

Note: You will get the protein sequence (trinity.fasta.transdecoder.pep) in working directory.

MAKER requires five (non-automated) steps

	Generate the CTL files:

1module load GIF/maker
2module rm perl/5.22.1
3maker -CTL

This will generate 3 CTL files (maker_opts.ctl, maker_bopts.ctl and maker_exe.ctl), you will need to edit them to make changes to the MAKER run. For the first round, change these lines in maker_opts.ctl file:

1genome=TAIR10_chr_all.fas
2est=trinity.fasta
3protein=trinity.fasta.transdecoder.pep
4est2genome=1
5protein2genome=1
6TMP=/dev/shm

	Execute MAKER 03_maker_start.sh in a slurm file. It is essential to request more than 1 node with multiple processors to run this efficiently.

1# Define a base name for maker output folder as the first argument.
2./03_maker_start.sh maker_case

	Upon completion, train SNAP and AUGUSTUS:

1#Use the same base name as previous step for first argument.
2./04_maker_process.sh maker_case

	Train GeneMark with genome sequence:

1./05_runGeneMark.sh TAIR10_chr_all.fas

	Once complete, modify the following lines in maker_opts.ctl file:

1snaphmm=maker.snap.hmm
2gmhmm=gmhmm.mod
3# Define a species as you want, but the name should not be existing in the augustus/config/species folder.
4augustus_species=maker_20171103

Then, 03_maker_start.sh again:

1# Use the same base name as previous step for first argument.
2./03_maker_start.sh maker_case

	Finalize predictions:

1./06_maker_finalize.sh maker_case

You will get the predicted gene models (maker_case.gff), protein sequences (maker_case.maker.proteins.fasta) and transcript sequence (maker_case.maker.transcripts.fasta) in the working directory.

Direct Inference evidence-based predictions

Automated pipeline

We provide an automated pipeline [https://github.com/eswlab/orphan-prediction/tree/master/evidence_based_pipeline] using pyrpipe [https://github.com/urmi-21/pyrpipe] and snakemake [https://snakemake.github.io/]. This pipeline can be easily configured and executed in an automated manner (HIGHLY RECOMMENDED).

The automated pipeline can be easily scaled on an HPC by executing multiple samples in parallel.
We recommend using this implementation of the pipeline for simplicity of use and reproducibility of results.

The pipeline can easily be modified and shared.
For additional information see: pyrpipe (https://doi.org/10.1093/nargab/lqab049) and orfipy (https://doi.org/10.1093/bioinformatics/btab090) pipelines.

Direct Inference prediction by steps

If you prefer to run the Direct Inference pipeline step by step, the details are explained below.

	Direct Inference predictions by steps

Direct Inference predictions by steps

See the scripts used for Direct Inference prediction here [https://github.com/eswlab/orphan-prediction/tree/master/scripts/DirectInf] .

Singularity container

For installation, we suggest that you to download the singularity container [https://github.com/aseetharam/transcript-assemblers] . This container includes all tools required to run the pipeline.

To use the container, add singularity run --cleanenv evidence.sif before the tools in each script. For example:

1singularity run --cleanenv evidence.sif hisat2

Input files for DirectInf

RNA-Seq raw reads fastq files: *_1.fastq.gz, *_2.fastq.gz
reference genome fasta file: TAIR10_chr_all.fas
list of input prediction: list.txt

Do RNA-Seq alignment by Hisat2

1while read line; do
2 ./01_runHisat2.sh ${line} TAIR10_chr_all.fas;
3done < SRR_Acc_List.txt

Note: Cufflinks and Class2 may takes a long time to process BAM file with deep depth region. Better to generate single bam file for each RNA-Seq data for next step.

Run Transcriptome assemblies using Class2, Cufflinks and Stringtie

1while read line; do
2 ./02_runClass2.sh ${line}_sorted.bam;
3 ./03_runCufflinks.sh ${line}_sorted.bam;
4 ./04_runStringtie.sh ${line}_sorted.bam;
5 done < SRR_Acc_List.txt

Note: Class2, Cufflinks and StringTie generates a gtf format transcripts for each SRR sample. You can use more transcriptome assembler as you need.

Generate high confidence splice sites

1./05_runPortCullis.sh TAIR10_rnaseq.bam

Note: The merged bam file (TAIR10_rnaseq.bam) obtained from the process of braker. You can also provide multiple single bam files got from 01_runHisat2.sh , but it takes some time to merge bam files. It’s faster to provide merged bam if you already run braker.

Here generate bed and tab file in portcullis_out/3-filt, we only use bed file.

Consolidate all the transcripts, and predict potential protein coding sequence

	Make a configure file and prepare transcripts:

You should prepare a `list.txt as below to include gtf path (1st column), gtf abbrev (2nd column), stranded-specific or not (3rd column):

1SRRID1_class.gtf cs_SRRID1 False
2SRRID1_cufflinks.gtf cl_SRRID1 False
3SRRID1_stringtie.gtf st_SRRID1 False
4SRRID2_class.gtf cs_SRRID2 False
5SRRID2_cufflinks.gtf cl_SRRID2 False
6SRRID2_stringtie.gtf st_SRRID2 False
7...

Then run the script as below:

1./06_runMikado_round1.sh TAIR10_chr_all.fas junctions.bed list.txt DI

This will generate DI_prepared.fasta file that will be used for predicting ORFs in the next step.

2. Predict potential CDS from transcripts:

1./07_runTransDecoder.sh DI_prepared.fasta

We will use DI_prepared.fasta.transdecoder.bed in the next step.

Note: Here we only kept complete CDS for next step. You can revise 07_runTransDecoder.sh to use both incomplete and complete CDS if you need.

3. Pick best transcripts for each locus and annotate them as gene:

1./08_runMikado_round2.sh DI_prepared.fasta.transdecoder.bed DI

This will generate:

1mikado.metrics.tsv
2mikado.scores.tsv
3DI.loci.gff3

Optional: Filter out transcripts with redundant CDS

1./09_rm_redundance.sh DI.loci.gff3 TAIR10_chr_all.fas

Optional: Filter out transcripts whose predicted proteins mapped to transposon elements

1./10_TEsorter.sh filter.pep.fa DI.loci.gff3

Note: filter.pep.fa is an output from previous step for removing redundant CDSs. You can also use all protein sequence if you don’t want to remove redundant CDSs.

Combine ab initio and Direct Inference evidence-based predictions

Pick one of the 2 combined predictions below according to your choice in ab initio

1. Merge BRAKER with Direct Inference (BIND):

Use Mikado to combine BRAKER-generated predictions with Direct Inference evidence-based predictions.

2. Merge MAKER with Direct Inference (MIND):

Use Mikado to combine MAKER-generated predictions with Direct Inference evidence-based predictions.

	BIND prediction

	MIND prediction

BIND prediction

Merge gene predictions of B RAKER (braker-final.gff3) with gene predictions IN ferred D irectly (DI-final.gff3).

See the scripts used for BIND here [https://github.com/eswlab/orphan-prediction/tree/master/scripts/BIND] .

Note: See the details to generate these two predictions in braker and DirectInf .

Input files for BIND

BRAKER prediction: braker-final.gff3
Direct Inference prediction: DI-final.gff3
reference genome fasta file: TAIR10_chr_all.fas
splice junction file: junctions.bed # from DirectInf step
list of input prediction: list_BIND.txt

Consolidate all the transcripts from BRAKER and DirInf, and predict potential protein coding sequence

	Make a configure file and prepare transcripts:

You should prepare a list_BIND.txt as below to include gtf path (1st column), gtf abbrev (2nd column), stranded-specific or not (3rd column):

1braker-final.gff3 br False
2DI-final.gff3 DI False

Then run the script as below:

1./01_runMikado_round1.sh TAIR10_chr_all.fas junctions.bed list_BIND.txt BIND

This will generate BIND_prepared.fasta file that will be used for predicting ORFs in the next step.

Note: junctions.bed is the same file generate from DirectInf step.

2. Predict potential CDS from transcripts:

1./02_runTransDecoder.sh BIND_prepared.fasta

We will use BIND_prepared.fasta.transdecoder.bed in the next step.

Note: Here we only kept complete CDS for next step. You can revise 02_runTransDecoder.sh to use both incomplete and complete CDS if you need.

3. Pick best transcripts for each locus and annotate them as gene:

1./03_runMikado_round2.sh BIND_prepared.fasta.transdecoder.bed BIND

This will generate:

1mikado.metrics.tsv
2mikado.scores.tsv
3BIND.loci.gff3

Optional: Filter out transcripts with redundant CDS

1./04_rm_redundance.sh BIND.loci.gff3 TAIR10_chr_all.fas

Optional: Filter out transcripts whose predicted proteins mapped to transposon elements

Note: filter.pep.fa is an output from previous step for removing redundant CDSs. You can also use all protein sequence if you don’t want to remove redundant CDSs.

MIND prediction

Merge gene predictions of M AKER (Maker-final.gff3) with gene predictions IN ferred D irectly (DI-final.gff3).

See the scripts used for MIND here [https://github.com/eswlab/orphan-prediction/tree/master/scripts/MIND] .

Note: See the details to generate these two predictions in maker and DirectInf .

Input files for MIND

BRAKER prediction: maker-final.gff3
Direct Inference prediction: DI-final.gff3
reference genome fasta file: TAIR10_chr_all.fas
splice junction file: junctions.bed # from DirectInf step
list of input prediction: list_MIND.txt

Consolidate all the transcripts from MAKER and DirInf, and predict potential protein coding sequence

	Make a configure file and prepare transcripts:

You should prepare a list_MIND.txt as below to include gtf path (1st column), gtf abbrev (2nd column), stranded-specific or not (3rd column):

1maker-final.gff3 mk False
2DI-final.gff3 DI False

Then run the script as below:

1./01_runMikado_round1.sh TAIR10_chr_all.fas junctions.bed list_MIND.txt MIND

This will generate MIND_prepared.fasta file that will be used for predicting ORFs in the next step.

Note: junctions.bed is the same file generate from DirectInf step.

2. Predict potential CDS from transcripts:

1./02_runTransDecoder.sh MIND_prepared.fasta

We will use MIND_prepared.fasta.transdecoder.bed in the next step.

Note: Here we only kept complete CDS for next step. You can revise 02_runTransDecoder.sh to use both incomplete and complete CDS if you need.

3. Pick best transcripts for each locus and annotate them as gene:

1./03_runMikado_round2.sh MIND_prepared.fasta.transdecoder.bed MIND

This will generate:

1mikado.metrics.tsv
2mikado.scores.tsv
3MIND.loci.gff3

Optional: Filter out transcripts with redundant CDS

1./04_rm_redundance.sh MIND.loci.gff3 TAIR10_chr_all.fas

Optional: Filter out transcripts whose predicted proteins mapped to transposon elements

Note: filter.pep.fa is an output from previous step for removing redundant CDSs. You can also use all protein sequence if you don’t want to remove redundant CDSs.

Downstream analysis to evaluate and annnotate gene predictions

See the scripts used for downstream evaluation here [https://github.com/eswlab/orphan-prediction/tree/master/scripts/downstream] .

1. Run Mikado Compare to compare prediction with known annotation

2. Run Salmon to quantify predictions

3. Run Ribotricer to verify translation signal for predicted protein coding genes

4. Run BUSCO to see how well the conserved genes are represented in your final predictions

5. Run OrthoFinder to find and annotate orthologs present in your predictions

6. Run phylostratR to find orphan genes in your predictions [For theory and details, see: https://doi.org/10.1093/bioinformatics/btz171]

7. You can also add functional annotation to your genes using homology and InterProScan (We didn’t have this step in our paper).

Index

 nav.xhtml

 Table of Contents

 		
 BIND and MIND: Gene prediction and optimization

 		
 Find an Orphan-Enriched RNA-Seq dataset from NCBI-SRA

 		
 Select RNA-Seq SRR ID from NCBI-SRA website for your desired species:

 		
 Download RNA-Seq raw reads:

 		
 Download the CDS sequences for the organism you are annotating, and build transcriptome for kallisto index:

 		
 For each SRR ID, run the Kallisto qualitification:

 		
 Merge the tsv files containing counts and TPM:

 		
 Run phylostratr to infer phylostrata of genes, and identify orphan genes:

 		
 Select Orphan-rich RNA-Seq data:

 		
 Ab initio predictions

 		
 BRAKER prediction

 		
 MAKER predictions

 		
 Input files for Maker

 		
 Merge RNA-Seq raw reads

 		
 Run trinity to predict transcripts and their inferred proteins

 		
 MAKER requires five (non-automated) steps

 		
 Direct Inference evidence-based predictions

 		
 Automated pipeline

 		
 Direct Inference prediction by steps

 		
 Direct Inference predictions by steps

 		
 Combine ab initio and Direct Inference evidence-based predictions

 		
 BIND prediction

 		
 Input files for BIND

 		
 Consolidate all the transcripts from BRAKER and DirInf, and predict potential protein coding sequence

 		
 Optional: Filter out transcripts with redundant CDS

 		
 Optional: Filter out transcripts whose predicted proteins mapped to transposon elements

 		
 MIND prediction

 		
 Input files for MIND

 		
 Consolidate all the transcripts from MAKER and DirInf, and predict potential protein coding sequence

 		
 Optional: Filter out transcripts with redundant CDS

 		
 Optional: Filter out transcripts whose predicted proteins mapped to transposon elements

 		
 Downstream analysis to evaluate and annnotate gene predictions

_images/ncbi-sra-1.png
("Arabidopsis thaliana"[Organism] AND *filetype fastq[Filter] AND "paired"[Layout] AND "illumina'[Pla

Create alert Advanced

Help

Access
Public (1,480)

Source
RNA(1,480)

Library Layout
paired (1,480)

Platform
llumina (1,430)

Strategy
other (1,430)

‘Summary ~ 20 per page ~ Send to_-_Filter your results:

Choose Destination
View results as an expanded interactive table using the RunSelector. Send resulte| OFile OClipboard
OCollections ~ OBLAST
@Run Selector
Search results
Items: 1 to 20 of 1480 | Send whole recordset to Run Selector

R

RNAseq of Arabidopsis thaliana nacbetainacbeta?
1. 1ILLUMINA (llumina HiSeq 2500) run: 19.7M spots, 4G bases, 1.5Gb downloads
Accession: SRXT136606

cloud ftp nchi (0)
cloud gs (1422)

_images/ncbi-sra-2.png
SN
S NCBI SRARunSelector Q @ &
o LogintoNIH
(4
1 DATASTORE pri A
2 DATASTORE reg Consent PUBLIC
3 accession 'DATASTORE filetype FASTQ, SRA
4 || AssayType -
5 AveSpotLen LibraryLayout: PAIRED
6 Batch LibrarySource "TRANSCRIPTOMIC
7 | BioSampleMode -~
8 | Cultivar sanism S
9 development. Platform ILLUMINA

10 | ecotype backgr
11 ENA_CHECKLIS

12 ENA-LAST-UPD
13 environmental Runs Bytes Bases Download
14 ercc spike-inm

15 Experiment Total 1524 335Tb 7.55T RuninfoTable o]

Selected 00 o RuninfoTable or Accession List

[oo | Qe < o S

X ~Ru ¢ BioProject ¢ BioSample & AssayType & CenterName DATASTORE provider DATASTOREre

1 ERR1295143 PRJEB12877 SAMEA3882030 RNA-Seq GATCbiotech ena,gs, ncbi,s3 ena, gs.US, ncb

_static/file.png

_static/minus.png

_static/plus.png

